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The effects of the experiment itself on the obtained results and, especially, the influence
of a large number of experiments is extensively discussed in the literature. We show
that the important factor that stands as the basis of these effects is that the involved
experiments are related and not independent and detached from each other. This rela-
tionship takes, as shown here, different forms for different situations and is found in
entirely different physical regimes such as the quantum and classical ones.

KEY WORDS: Feynman integrals; Everett’s relative state; entropy; measurement
theory.

1. INTRODUCTION

The effects of observation on the obtained results have been extensively
discussed in the literature (see, for example, Daneri et al., 1962; Wheeler and
Zurek, 1983 and references therein). A special kind of experimentations which
attract many discussions by many authors (Aharono and Vardi, 1980; Bixon,
1982; Chiu et al., 1977; Facchi et al., 1999; Giulini et al., 1996; Itano et al., 1990;
Kofman and Kurizki, 1996; Kurizki et al., 1995; Misra and Sudarshan, 1977;
Pascazio and Namiki, 1994; Peres, 1989; Peres and Ron, 1990; Simonius, 1978;
Wilkinson et al., 1997) are those in which a large number of experiments are
involved. Among these one may note the special role played by those in which the
time duration of each of the involved experiments tends to become infinitesimally
small. Two quantum versions of these very short-time experiments were studied.
(1) The same experiment is infinitely repeated, in a finite total time, on the same
system which results in preserving its initial state (from the very large number of
different states to which it may be projected by the experiment) (Bixon, 1982; Chiu
et al., 1977; Giulini et al., 1996; Itano et al., 1990; Kofman and Kurizki, 1996;
Kurizki et al., 1995; Misra and Sudarshan, 1977; Pascazio and Namiki, 1994;
Peres, 1989; Peres and Ron, 1990; Simonius, 1978; Wilkinson et al., 1997). (2) A
very large number of slightly different experiments are densely performed on the
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same system which results in “realizing” (Aharonov and Vardi, 1980) the path of
states through which the system is continuously projected. That is, the probability
to be projected to this specific path of states (and not to any of the other large
number of different possible paths along which the system may evolute) tends to
unity (Aharonov and Vardi, 1980; Facchi et al., 1999). The first version is termed
static Zeno effect and the second dynamic Zeno effect (Facchi et al., 1999).

Another kind of observation that involves many experiments is the space Zeno
effect (Bar and Horwitz, 2001; Luo, 2003) which is obtained when one performs
the same experiment in a large number of identical independent non-overlapping
regions of space. It has been shown (Bar and Horwitz, 2001; Luo, 2003) that when
these regions become infinitesimally small, corresponding to the shrinking of the
measurement times in the time Zeno effect, the performance of such experiments
has, as for the static Zeno, a null effect (Bar and Horwitz, 2001; Luo, 2003).

We show here that what generally characterizes these and other similar situa-
tions is that all the involved experiments, even those that seems to be entirely inde-
pendent, are related to each other in some kind of relationship which is responsible
for the obtained results. This is shown for entirely remote and different physical
situations which are studied by different methods such as the Feynman path in-
tegral (Feynman, 1948; Feynman and Hibbs, 1965; Roepstorff, 1994; Schulman,
1981), the Everett’s universal wave function (Everett, 1957; Graham, 1973) and
the classical cylinder–piston system (Reif, 1965; Szilard, 1983). We show that
the mentioned relationship assumes different forms for these different situations
which, actually, determine the necessary details of the involved experiments. Thus,
for some situations, like the static Zeno effect, all the systems should be related by
preparing them in the same initial state, whereas for the dynamic Zeno effect they
are related by preparing them in different initial states as we show in Section 1.
We represent in the following sections examples which explain the meaning of
this relationship and the effects it produces.

In Section 2 we use the Feynman path integral method (Feynman, 1948;
Feynman and Hibbs, 1965; Roepstorff, 1994; Schulman, 1981) to show that if
one wants to obtain a large probability for an evolution along a prescribed path
of states then all the involved systems must be related so that not even two of
them happen to have the same initial state. That is, if this condition is not strictly
kept and one prepares these systems so that some of them may have the same
initial states then the expected evolution along the specified path of states may
not be obtained. In Section 3 we use the Everett’s relative state theory (Everett,
1957; Graham, 1973), which has been especially formulated to take into account
the influence of observers and experiments, to show the effect of experimenting
with related systems. In Everett’s theory, the necessity of relationship among the
systems is so obvious that it becomes almost trivial to emphasize it. We show
that if the measurement of the observable A results with K different possible
outcomes then the probability to find a specified group of r eigenvalues (from the



The Effects of Related Experiments 1097

given K) in an n-sequence becomes very small for large K and small r . This is
effected through obtaining an asymptotically large number of different sequences
(observers) for these values of K and r which means that the relationship among
them is very small.

In Section 4 we use entropy considerations and the classical thermodynamical
system of cylinder and pistons (Reif, 1965; Szilard, 1983) to show the influence
of related systems. We generalize the discussion in (Szilard, 1983) to include a
large ensemble of identical cylinders and show that the results obtained when
these systems are related greatly differ from those obtained when the ensemble’s
components are independent.

2. THE FEYNMAN PATH INTEGRALS OF THE
ENSEMBLE OF OBSERVERS

The large number of experiments discussed here are performed by first prepar-
ing N similar systems at N arbitrarily selected states from, actually, the very large
number of possible states which may be assigned to any system. These sys-
tems are then delivered to the N observers of the ensemble so that the system
i (i = 1, 2, . . . , N), prepared at the state φi , is assigned to the observer Oi . As
known (Merzbacher, 1961; Tannoudji et al., 1977), the state of any quantum system
changes with time without having to touch it. Thus, we may write for the condi-
tional probability of a self-transition that the first observer O1 finds his system,
after checking its present state, to be at the state φ2 of the second observer O2

�12 =
∑

i

φ1iφi2 (1)

The summation is over all the possible secondary paths (Bar, 2000) (as those
shown along the middle path of Fig. 1), which lead from φ1 to φ2 and the quantities
φ1i and φi2 denote (Feynman, 1948; Feynman and Hibbs, 1965; Roepstorff, 1994;
Schulman, 1981) the probability amplitudes to proceed from the state φ1 to the
intermediate one φi and from φi to φ2 respectively. In the same manner, one may
write for the conditional probability amplitude that the second observer O2 finds
his system at the state φ3 (of the observer O3), provided that the observer O1 finds
his system at the state φ2

�23|12 =
∑
ij

φ1iφi2φ2jφj3 (2)

where �23|12 is the remarked conditional probability amplitude and
∑

ij is the
summation over all the secondary paths that lead from the state φ1 to φ2 and
over those from φ2 to φ3. Correspondingly, the conditional probability amplitude
that the (N − 1)th observer finds his system at the state φN of the observer ON

provided that all the former (N − 2) observers find their respective systems to be
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Fig. 1. Seven Feynman paths of states, from a very large number of possible ones, that
all begin at the state φ1 (at the bottom) and end at φ8 are shown in the figure (only eight
states are shown for clarity). The middle path is the one along which the collective dense
measurement is performed by the ensemble members Oi , i = 1, 2, . . . , N . The N separate
systems of these observers have been initially prepared in the states φi i = 1, 2, . . . , N .
Note the secondary Feynman paths between neighbouring states in the middle path.
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at the states φi (i = 2, 3, . . . , N − 1) is

�N−1N |12,23,...,N−2N−1 =
∑
ij ···rs

φ1iφi2φ2jφj3 · · · φN−2rφrN−1φN−1sφsN , (3)

where the intermediate states in Equations (1)–(3) are orthonormal. Figure 1
shows seven Feynman paths of states, from actually a large number of paths,
that all begin at the state φ1 and end at φ8 (only eight states are shown in the
figure for clarity). The middle path is the specific one along which the described
collective measurement is performed. Along this line we have the N (N = 8
in the figure) initially prepared states φ1, φ2, . . . , φN as well as the secondary
Feynman paths that lead from each φi to φi+1 where i = 1, 2, . . . , (N − 1). As
seen from Equations (1)–(3) the paths (of states) between non-neighbouring
states as, for example, from φi to φi+2 are obtained as the sum of the separate
paths, which lead from φi to φi+1 and from φi+1 to φi+2.

The relevant conditional probability is found by multiplying the last probabil-
ity amplitude from Equation (3) by its conjugate to obtain, omitting the subscripts
of the �’s for clarity

�†� =
∑
ì j̀ ···r̀ s̀

∑
ij ···rs

φì1φ1iφ2ìφi2φj̀2φ2jφ3j̀ φj3 · · · φr̀N−2φN−2rφN−1r̀ φrN−1 ·

φs̀N−1φN−1sφNs̀φsN =
( ∑

ìi

φì1φ1iφ2ìφi2

)(∑
j̀ j

φj̀2φ2jφ3j̀ φj3

)
· · · (4)

( ∑
r̀r

φr̀N−2φN−2rφN−1r̀ φrN−1

)( ∑
s̀s

φs̀N−1φN−1sφNs̀φsN

)
,

where the number of all the double sums
∑

ìi

∑
j̀ j · · ·∑r̀r

∑
s̀s is N .

As remarked, we are interested in the limit of dense measurement along the
relevant Feynman path so we take N → ∞. In this limit the length of the secondary
Feynman paths among the initially prepared N states (where now N → ∞) tends
to zero (Bar, 2000) so that the former probabilities to proceed along the secondary
paths between the given states become the probabilities for these states (Bar,
2000). Thus, we may write for Equation (4) in the limit of N → ∞

lim
N→∞

〈�†|�〉 = lim
N→∞

〈φÌ1|φ2Ì 〉〈φI2|φ1I 〉〈φJ̀2|φ3J̀ 〉〈φJ3|φ2J 〉 · · ·
〈φR̀(N−2)|φ(N−1)R̀〉〈φR(N−1)|φ(N−2)R〉〈φS̀(N−1)|φNS̀〉 · (5)

〈φSN |φ(N−1)S〉 = δφÌ1φ2Ì
δφ1I φI2δφJ̀2φ3J̀

δφ2J φJ3 · · · δφR̀(N−2)φ(N−1)R̀

· δφR(N−1)φ(N−2)R δφS̀(N−1)φNS̀
δφSN φ(N−1)S = 1,

where the former indices, for finite N , i, ì, j, j̀ , . . . , r, r̀, s, s̀ are now, in the limit
of N → ∞, written in an upper case format. This is to emphasize that, unlike
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the case for finite N , neighbouring states along the traversed Feynman path differ
infinitesimally. The last result of unity follows because, as just noted, in the limit
of N → ∞ successive states differ infinitesimally from each other so we may
write as in Facchi et al. (1999) 〈φk̀−1|φk̀〉 = 〈φk−1|φk〉 ≈ δφk̀−1φk̀

= δφk−1φk
≈ 1.

Thus, we see that performing dense measurement along any Feynman path of
states results in its “realization” (Aharonov and Vardi, 1980; Facchi et al., 1999)
in the sense that the probability to proceed through all of its states tends to
unity.

As remarked, the key feature of the described dense measurement is that all
the N systems are related to each other in such a way that their N initial states
are prepared to be different from each other where in the limit of N → ∞ these
differences become infinitesimal for neighbouring states. Note that we do not take
all the N initial states to be identical since in this case all the former discussion
and Equations (1)–(5) would not be relevant. This is because the primary Feynman
path formerly applied for describing the path of these N states would shrink to a
point if they are identical. Note that by taking the limit of N → ∞ and by having
(for continuity) slight differences between neighbouring states we have already
caused the secondary Feynman paths of the relevant primary one (see Fig. 1) to
shrink and disappear. Thus, as noted, taking N identical initial states may causes
the primary Feynman path, in the limit of N → ∞, to shrink to a point which is not
the meant results of this discussion. Note that this procedure of taking N different
initial states where the neighbouring ones differ infinitesimally in the limit of
N → ∞ is the key property of the dynamic Zeno effect as seen in (Aharonov and
Vardi, 1980; Facchi et al., 1999) (see, especially, Sections 1 and 2 in Facchi et al.,
1999). Also, the continuity condition is not violated as seen from Equation (5).

Note that the described dense measurement is performed through the joint
action of all the members of the ensemble as schematically illustrated in Fig. 2,
which represents the ensemble of observers after the remarked collective mea-
surement. Each batch of four similar curves denotes a member of the N -ensemble
system that has, as known, a large number of different possible Feynman paths
of evolution (only four are shown for clarity). In the middle part of the figure
we have a large number of different batches of paths all mixed among them so
it becomes difficult to see which curve belongs to which batch. This corresponds
to densely measuring (N → ∞) where neighbouring states infinitesimally differ
from each other. The emphasized path in Fig. 2 is the definite path along which
the described collective dense measurement has been done. Note that this path,
actually, belongs to all the different mixed batches which means that after com-
pleting the collective measurement each one of those that participates in it has
now the same Feynman path. The reason is that although each observer Oi of the
ensemble performs his experiment on his prepared state φi , nevertheless, the re-
sults he obtains are valid for all the others, since any observer that acts on the same
state φi under exactly the same conditions obtains the same result. In other words,
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Fig. 2. A schematic representation of the physical situation after performing the collective
dense measurement symbolized by Fig. 1. Note that although no member of the ensemble
has done dense measurement by himself, nevertheless, the joint action of all or most of
the observers has resulted in “realizing” the specific Feynman path from Fig. 1 for all the
participating observers. This “realized” path is shown emphasized in the figure.

the emphasized Feynman path belongs now to all of them in the sense that the
probability for each to move along its constituent states tends to unity as seen from
Equation (5).
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We note that in contrast to the relationship discussed just now which demands
a preparation of different initial states for the realization of its (dynamic Zeno)
effect the situation regarding the static Zeno effect is opposite and contrary. This is
because the required relationship there demands to prepare all the initial states of
the involved experiments to be identical (Bixon, 1982; Chiu et al., 1977; Giulini
et al., 1996; Itano et al., 1990; Misra and Sudarshan, 1977; Pascazio and Namiki,
1994; Peres, 1989; Peres and Amiram, 1990) so as to be able to preserve this
state in time. We note that using a large ensemble of similar systems for analysing
experimental results has been fruitfully done in the literature (Graham, 1973;
Finkelstein, 1963; Hartle, 1966; Smolin, 1984) without invoking any Zeno idea. It
has been shown, for example, that by considering N identical systems all prepared
in the same initial state one may derive the probability interpretation of quantum
mechanics in the limit of N → ∞. That is, this probability is not imposed on
the theory as an external assumption as done in the conventional Copenhagen
interpretation (Merzbacher, 1961; Tannoudji et al., 1977) of quantum mechanics
but is derived from other principles of quantum mechanics (Smolin, 1984). This
is done using Finkelstein theorem (Finkelstein, 1963; Smolin, 1984).

3. THE RELATIVE STATE THEORY OF EVERETT

The last results may be demonstrated in a more natural and appealing manner
by using the relative state theory of Everett (1957) and Graham (1973) which
has been formulated, especially, for taking observers into account. We use, in
the following, the special notation and terminology of this theory. Thus, if the
initial state was some eigenstate of an operator A the total initial state of the
(system S + observer O) is denoted by �S+O

i = φi�
O[· · ·], where φi is the initial

eigenstate of the system S and �O[· · ·] denotes the observer’s state before the
measurement. After the experiment the observer’s state is denoted by �O[· · ·αi],
where αi stands for recording the eigenvalue αi by the observer and the total
final state of the (system S + observer O) is �S+O

f = φi�
O[· · ·αi]. Now, if the

initial state of the system is not an eigenstate then it may be expressed as a
superpositions of such eigenfunctions

∑
i aiφi and the total states before and after

the measurement are (Everett, 1957; Graham, 1973) �S+O
i = ∑

i aiφi�
O[· · ·], and

�S+O
f = ∑

i aiφi�
O[· · ·αi], respectively, where ai = 〈φi |�S+O〉. We note that we

consider here the one-step measurement of Everett (1957) and not the two-step
version (Graham, 1973) of it in which a macroscopic apparatus is introduced
between a microscopic system and a macroscopic observer.

We, now, wish to represent the former process of measuring the observable A

on N identical independent systems. We assume that the initial state of each one of
the N systems is not an eigenstate of A so it can be expanded as a superpositions
of such eigenfunctions. Thus, we may write for the initial state of the N -system
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ensemble (Everett, 1957)

�S
i =

∑
i

∑
j

· · ·
∑

k

∑
l

〈φi |φ〉〈φj |φ〉 · · · 〈φk|φ〉〈φl|φ〉φiφj · · · φkφl (6)

where φi, φj , . . . , φk, φl are the eigenfunctions of the operator A. Thus, the initial
and final states of the total system (N systems + observer) are

�S+O
i =

∑
i

∑
j

· · ·
∑

k

∑
l

〈φi |φ〉〈φj |φ〉 · · · 〈φk|φ〉〈φl|φ〉φiφj · · · φkφl�
O[· · ·]

(7)

�S+O
f =

∑
i

∑
j

· · ·
∑

k

∑
l

〈φi |φ〉〈φj |φ〉 · · · 〈φk|φ〉〈φl|φ〉φiφj · · · φkφl�
O

[αi, αj · · · αk, αl] (8)

where �O[αi, αj , . . . , αk, αl] denotes that the observer has measured the n eigen-
values αi, αj , . . . , αk, αl of A. Note that each term in Equation (8) actually denotes
an observer with his specific sequence [αi, αj , . . . , αk, αl] which results from the
n experiments. Thus, Equation (8), termed the Everett’s universal wave function
(Everett, 1957; Graham, 1973), gives all the possible results that may be obtained
from performing the same experiment on the n systems.

We, now, count the number of observers that have the same or similar se-
quences [αi, αj , . . . , αk, αl] which record, as remarked, the n measured eigenval-
ues. For this we assume that each measurement of the observable A may give any
of K possible different eigenvalues and that some of the n components in any se-
quence may be identical. Thus, denoting by R1, R2, . . . , Rr the numbers of times
the r particular different eigenvalues l1, l2, . . . , lr , respectively, appear in some
specified sequence [αi, αj , . . . , αk, αl] one may see from Equation (8) that each
possible value of Ri in the range 0 ≤ Ri ≤ n, and for each i (1 ≤ i ≤ r), may be
realized in some observer. Now, the number of sequences in which l1, l2, . . . , lr , re-
spectively, occur at R1, R2, . . . , Rr predetermined positions is (K − r)(n−∑i=r

i=1 Ri ).
This is because for each position in the sequence [αi, αj , . . . , αk, αl] in which the
r eigenvalues l1, l2, . . . , lr are absent there are (K − r) possible locations. Note
that K and r should satisfy the relation K ≥ r . Thus, the total number of sequences
in which l1, l2, . . . , lr , respectively, occur in R1, R2, . . . , Rr positions (we denote
this number by Nl1,l2,...,lr ) is

Nl1,l2,...,lr =
(

n

R1

) (
(n − R1)

R2

) (
(n − (R1 + R2))

R3

)
· · ·


 (n −

i=r−1∑
i=1

Ri)

Rr




× (K − r)(n−∑i=r
i=1 Ri ), K 	= r, K 	= 1 (9)
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where

(
n

R1

)

is the number of possible ways to choose in the n-member sequence
[αi, αj , . . . , αk, αl] R1 places for l1,

(
(n − R1)

R2

)

is the number of possible ways to choose R2 places from the remaining (n −
R1), etc. Note that when K = r , which means that any one of the K possible
results of the experiment must be one of the r eigenvalues l1, l2, . . . , lr , then the
probability that all the n components (where some of them may be identical)
of any sequence belong to the l1, l2, . . . , lr ’s group is unity. In this case, the
number of observers that have in their sequences all the r different eigenvalues
l1, l2, . . . , lr is

Nl1,l2,...,lr =
(

n

R1

) (
(n − R1)

R2

) (
(n − (R1 + R2))

R3

)
· · ·


 (n −

i=r−1∑
i=1

Ri)

Rr


 ,

K = r, K 	= 1

which is the same as Equation (9) but without the factor in K .
The relevant measure may be found (Graham, 1973) by taking account of

the expected relative frequency Pl1,l2,...,lr of the eigenvalues l1, l2, . . . , lr and
the corresponding relative frequency Qm	=l1,l2,...,lr of any other eigenvalue m

different from l1, l2, . . . , lr . The first is given by Pl1,l2,...,lr = |〈�l1,l2,...,lr |�〉|2
where |�l1,l2,...,lr 〉 is the state in which the eigenvalues l1, l2, . . . , lr occur among
those of the sequence [αi, αj , . . . , αk, αl] and the second is Qm	=l1,l2,...,lr =∑

(m	=l1,l2,...,lr ) |〈�m	=l1,l2,...,lr |�〉|2 = 1 − Pl1,l2,...,lr where |�m	=l1,l2,...,lr 〉 is the state
in which the eigenvalues l1, l2, . . . , lr do not occur among those of this sequence.
Thus, the measure of the sequences that have the eigenvalues l1, l2, . . . , lr at the
respective R1, R2, . . . , Rr predetermined positions is P

∑i=r
i=1 Ri

l1,l2,...,lr
Q

(n−∑i=r
i=1 Ri )

m	=l1,l2,...,lr
. The

last expression must be multiplied by the number of possible ways to choose
first R1 places for l1 from the n positions of the sequence [αi, αj , . . . , αk, αl],
then to choose R2 places for l2 from the remaining n − R1, etc., until the last
step of choosing Rr places from (n − ∑i=r−1

i=1 Ri) (see Equation (9)). That is, the
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sought-for measure Me is

Me(r) =
(

n

R1

)(
(n − R1)

R2

) (
(n − (R1 + R2))

R3

)
· · ·


 (n −

i=r−1∑
i=1

Ri)

Rr




×P
∑i=r

i=1 Ri

l1,l2,...,lr
Q

(n−∑i=r
i=1 Ri )

m	=l1,l2,...,lr
, (10)

which is the Bernoulli distribution (Spiegel, 1975). As remarked by Graham
(1973), Me(r) from Equation (10) may be approximated, for large N ,
by a Gaussian distribution with mean NPl1,l2,...,lr and standard deviation√

NPl1,l2,...,lr Qm	=l1,l2,...,lr . We, now, calculate an explicit expression for Pl1,l2,...,lr (r)
and Qm	=l1,l2,...,lr (r) as functions of r , for n = 30. The probability Pl1,l2,...,lr (r) to
find the eigenvalues l1, l2, . . . , lr among those of the sequence [αi, αj , . . . , αk, αl]
may be written as Pl1,l2,...,lr (r) = |〈�l1,l2,...,lr |�〉|2 = r

n
= r

30 , and the prob-
ability to find any other eigenvalue m 	= l1, l2, . . . , lr is Qm	=l1,l2,...,lr (r) =∑

(m	=l1,l2,...,lr ) |〈�m	=l1,l2,...,lr |�〉|2 = 1 − Pl1,l2,...,lr = 1 − r
30 = (30−r)

30 . For simpli-
fying the following calculations we assign to all the values of Ri i = 1, 2, . . . , r

the unity value, in which case each of the given eigenvalues l1, l2, . . . , lr may occur
only once in the sequence [αi, αj , . . . , αk, αl]. Thus, the relevant total number of
sequences (observers) Nl1,l2,...,lr (K, r) and the corresponding measure Me(r) from
Equations (9) and (10) are given by

Nl1,l2,...,lr (K, r) =
(

30

1

) (
29

1

)
· · ·

(
(30 − (r − 1))

1

)
(K − 1)(30−r)

=
i=r−1∏
i=0

(30 − i)(K − 1)(30−r) (11)

and

Me(r) =
(

30

1

) (
29

1

)
· · ·

(
(30 − (r − 1))

1

) ( r

30

)r
(

(30 − r)

30

)(30−r)

=
i=r−1∏
i=0

(30 − i)
( r

30

)r
(

(30 − r)

30

)(30−r)

(12)

In Table I we show the number of observers (sequences) that have r prede-
termined different eigenvalues in their respective n-place sequences for n = 30
and for the five different values of K = 1100, 100, 10, 5, 2. Note that for the
large values of K , which signifies a large number of possible results for the
measurement of the observable A, the sequences most frequently encountered
are, as expected, the ones that contain small number of the r eigenvalues.
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Table I. The Number of Observers that have r Positions in their 30 Places Sequences Occupied by
the Preassigned Eigenvalues, where the Numbers K of Possible Values for each Experiment are 1100,

100, 10, 5 and 2

r K = 1100 K = 100 K = 10 K = 5 K = 2

1 4.6350491 × 1089 2.2415163 × 1059 1.4130386 × 1029 8.6469113 × 1018 3 × 101

2 1.1922979 × 1088 4.9413927 × 1058 1.6828247 × 1028 1.9902809 × 1016 870
3 2.9665811 × 1086 1.0703212 × 1058 1.6007531 × 1027 3.2695439 × 1012 —
4 7.1304257 × 1084 2.2755852 × 1057 1.1219501 × 1026 6.5772 × 105 —
5 1.6533598 × 1083 4.7435614 × 1056 5.0964117 × 1024 171 × 105 —
6 3.6929220 × 1081 9.6832889 × 1055 1.2033562 × 1023 — —
7 7.9328524 × 1079 1.9331852 × 1055 9.6594968 × 1020 — —
8 1.6360310 × 1078 3.7689961 × 1054 9.8981353 × 1017 — —
9 3.2332250 × 1076 7.1644920 × 1053 5.1917786 × 1012 — —

10 6.1103406 × 1074 1.3255181 × 1053 1.09027 × 1014 — —
11 1.1017807 × 1073 2.3821855 × 1052 — — —
12 1.890772 × 1071 4.1496088 × 1051 — — —
13 3.0795964 × 1069 6.9890614 × 1050 — — —
14 4.7458902 × 1067 1.1350519 × 1050 — — —
15 6.8961474 × 1065 1.771921 × 1049 — — —
16 9.4115613 × 1063 2.6494866 × 1048 — — —
17 1.2010185 × 1062 3.7791572 × 1047 — — —
18 1.4257725 × 1060 5.1178711 × 1046 — — —
19 1.5652618 × 1058 6.5439439 × 1045 — — —
20 1.5781003 × 1056 7.8486852 × 1044 — — —
21 1.4490723 × 1054 8.7607415 × 1043 — — —
22 1.1997469 × 1052 9.0135604 × 1042 — — —
23 8.8458478 × 1049 8.4462633 × 1041 — — —
24 5.7174346 × 1047 7.0991954 × 1040 — — —
25 3.1733732 × 1045 5.2454789 × 1039 — — —
26 1.4705031 × 1043 3.3141771 × 1038 — — —
27 5.4614504 × 1040 1.7197979 × 1037 — — —
28 1.5241217 × 1038 6.8753541 × 1035 — — —
29 2.8408581 × 1035 1.8832953 × 1034 — — —
30 2.6525286 × 1032 2.6525286 × 1032 — — —

Note. The untabulated places for K = 10, K = 5 and K = 2 are when K ≤ r .

That is, the larger is K the smaller is the relationship among the ensemble’s
members. For example, for K = 1100 and 100 the number of different ob-
servers (sequences) with r = 1, that have only one of the preassigned eigen-
values, are 4.6350491 × 1089 and 2.2415163 × 1059, respectively, compared to
2.6525286 × 1032 and 2.6525286 × 1032 that have all the 30 places in their se-
quences occupied by such eigenvalues. That is, for K = 1100 and 100 the number
of different observers (sequences) with r = 1 are respectively larger by the factors
of 1.7474 × 1057 and 8.45048 × 1026 compared to those with r = 30.
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These results, although in a smaller scale, are found also for small K which
signifies a small number of possible different results for the measurement of A.
That is, most observers are found to have in their sequences a small number of
the r predetermined eigenvalues. Note that for small K we can read from Table I
the values of Nl1,l2,...,lr also for K = r . For example, for K = r = 2 the number
of different sequences is greater by a factor of 29 than for K = 2 and r = 1. The
results of Table I are corroborated by directly calculating the relative rate R(K, r)
of the increase of Nl1,l2,...,lr from Equation (11) which is

R(K, r) = Nl1,l2,...,lr (K, r) − Nl1,l2,...,lr (K, r − 1)

Nl1,l2,...,lr (K, r)
, (13)

It has been found that the rate R(K, r) is always negative for the order of magni-
tudes of K = 100 and r ≤ K discussed here which means that Nl1,l2,...,lr (K, r) <

Nl1,l2,...,lr (K, r − 1). That is, as we have found from Table I, the large number of
observers (sequences) are found at small r . Also, we find for small r (not shown)
that the larger K becomes the more inclined toward negative values is the surface
of R(K, r) which means that the large number of observers are found, as in Table I,
at large K and small r . When K = 1, which means that there is only one result
for the measurement of A, then we must have r = 1 and the former problem of
calculating the probability to find r specified eigenvalues in n-sequence reduces
to finding one known eigenvalue which is trivially unity since there exists no other
eigenvalue to measure.

In summary, we see that an important necessary aspect for obtaining a large
probability for a specific configuration of n-sequence is that its components must be
related. This relationship is expressed through the number of different sequences
in Table I so that the smaller is this number the greater is the relationship and vice
versa. The number of different sequences (observers) is determined by K and r

so that for small K and large r , where always K ≥ r , this number is small and
for large K and small r it is large. Note that if they do not measure the same
observable then the observers are totally unrelated and our former results would
not be obtained even for small K .

4. THE CLASSICAL EFFECT OF AN ENSEMBLE OF OBSERVERS

We discuss now the same system used by Szilard (1983) for demonstrating
the effect of observation on the experimental results. The discussion by Szilard
(1983) is generalized to include the large ensemble of related N thermodynamical
systems, of the kind studied by Szilard (1983). That is, a hollow cylinder that
contains n particles, not all of the same kind, among four pistons as shown in
Fig. 3. The pistons A and À are fixed, while B and B̀ may move along the
cylinder. Also, the pistons À and B do not allow passage of particles through
them, whereas A and B̀ are permeable so that each permits some kind of particles
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Fig. 3. The cylinder with the four pistons. The pistons A and À are fixed, whereas B and B̀ may move
along the cylinder. Also, piston A is permeable to the molecules inside the interval (x1, x2) (see text)
and B̀ to those outside it.

to move through it where those that are allowed to pass through A are not allowed
through B̀ and vice versa. The pistons B and B̀ move in such a way that the
distances BB̀ and AÀ are always equal as seen in Fig. 3. These distances are
measured using the x-axis, which is assumed to be upward along the cylinder.
We assume that the piston A is permeable only to the particles inside the interval
(x1, x2) and B̀ only to those outside it. We denote by w1 the initial probability
that any randomly selected particle is found to be in the interval (x1, x2) and by
w2 that it is outside it. At first, the pistons B and B̀ were at the positions of A

and À, respectively, and all the n particles were in the one space between. We,
now, wish to perform, reversibly and with no external force, a complete cycle
of first moving up the pistons BB̀ and then retracing them back to their initial
places. Thus, by moving up, without doing work, the pistons B and B̀ the volume
enclosed between them equals, as remarked, that between AÀ and we obtain two
separate equal volumes, each of which equals to the initial one. Now, since A is
permeable to the particles in the interval (x1, x2) and B̀ to the rest the result is that
the upper volume BB̀ contains only the particles from the predetermined interval
(x1, x2) and the lower AÀ only the others.

When we retrace the former steps and move down the pistons B and B̀ to
their former places at A and À, the same initial volume is obtained. We must take
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into account, however, that during the upward motion some particles that were
inside (outside) the interval (x1, x2) may come out of (into) it due to thermal or
other kind of fluctuation so that these particles change from the kind that may
pass through the piston A (B̀) into the kind that is not allowed to do that. Thus,
the last step of retracing the pistons B, B̀ into their former initial positions at the
pistons A, À, respectively, can not be performed without doing work, since the
molecules that have come out of (into) the interval (x1, x2) are not permitted now
to pass through A (B̀). That is, the former process of expanding the volume is not
reversible as described because we have to exert force on these molecules to move
them back into (out of) the interval (x1, x2) so that they can pass through A (B̀).

We may express this quantitatively by noting that there is now (Szilard,
1983) a decrease of entropy per molecule after the first step of moving up the
pistons. This is calculated by taking into account that now the probabilities to find
any randomly selected molecule out of (in) the preassigned interval (x1, x2) are
different from the initial values w2 and w1 before moving up the pistons. Thus,
suppose that during the first stage of expanding the initial volume of the cylinder
no molecules, from the total number n, have come out of the remarked interval
and ni from outside have entered so that the probability to find now any randomly
selected molecule out of it is

(
w2 + (no−ni)

n

)
and that to find it in is

(
w1 + (ni−no)

n

)
.

Thus, denoting the entropies per molecule before and after moving up the pistons
by si and sm, respectively, we have (Szilard, 1983)

si = −k(w1 ln w1 + w2 ln w2), (14)

sm = −k

((
w1 + (ni − no)

n

)
ln

(
w1 + (ni − no)

n

)

+
(

w2 + (no − ni)

n

)
ln

(
w2 + (no − ni)

n

))
, (15)

where k is Boltzman’s constant. The difference in the entropy per molecule
between the two situations from Equations (14) and (15) is

δs = (sm − si) = −
(

kw1

(
ln

(
w1 + (ni − no)

n

)
− ln w1

)

+ kw2

(
ln

(
w2 + (no − ni)

n

)
− ln w2

)
+ k

(no − ni)

n

(
ln

(
w2 + (no − ni)

n

)

− ln

(
w1 + (ni − no)

n

)))
= −

(
kw1

(
1 + (ni − no)

w1n

)
ln

(
1 + (ni − no)

w1n

)

+ kw2

(
1 + (no − ni)

w2n

)
ln

(
1 + (no − ni)

w2n

)
+ k(no − ni)

n
ln

(
w2

w1

))
(16)
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Eliminating w2 through use of the relation w1 + w2 = 1 one may write the last
equation as

δs = (sm − si) = −
(

kw1

(
1 − (no − ni)

nw1

)
ln

(
1 − (no − ni)

nw1

)

+ k(1 − w1)

(
1 + (no − ni)

n(1 − w1)

)
ln

(
1 + (no − ni)

n(1 − w1)

)

+ k(no − ni)

n
ln

(
(1 − w1)

w1

) )
(17)

We note that the probability w1 must be directly proportional to the length
of the remarked interval x2 − x1, so that a small or large value for one indicates
a corresponding value for the other. Thus, we may assume a normal distribu-
tion (Spiegel, 1975) for w1 in terms of x and write for the density function of
w1(x) fw1 (x) = exp(−(x − µ)2/2σ 2)/

√
2πσ , where µ is the mean value of x

and σ is the standard deviation. To further simplify the following calculation
we assume a standard normal distribution (Spiegel, 1975) z = (x − µ)/σ for
which µ = 0 and σ = 1. Thus, the density function fw1 (x) may be written as
fw1 (z) = exp(−(z)2/2)/

√
2π and the probability w1(x) to find any randomly se-

lected molecule in the interval (−x, x), where now this interval is symmetrically
located around the origin x = 0, is (Spiegel, 1975)

w1(x) =
∫ x

−x

fw1 (z)dz = 1√
2π

∫ x

−x

dze− z2

2 = erf(
x√
2

) (18)

erf(x) is the error function defined as erf(x) = 2√
π

∫ x

0 e−u2
du. Note that erf(0) =

0, erf(∞) = 1, and erf(−x) = −erf(x) so that this function is appropriate for
a representation of the probability w1(x). Substituting from Equation (18) into
Equation (17) we obtain

δs = (sm − si) = −
(
k × erf

(
x√
2

) (
1 − (no − ni)

n × erf
(

x√
2

)
)

ln

(
1 − (no − ni)

n × erf
(

x√
2

)
)

+ k

(
1 − erf

(
x√
2

))(
1 + (no − ni)

n
(
1 − erf

(
x√
2

))
)

ln

(
1 + (no − ni)

n
(
1 − erf

(
x√
2

))
)

+ k(no − ni)

n
ln

((
1 − erf

(
x√
2

))
erf

(
x√
2

)
))

(19)

Equation (19), which gives the entropy decrease per molecule, must be mul-
tiplied by the number n of molecules in the cylinder in order to obtain the total de-
crease of entropy after moving up the pistons. Figure 4 shows a three-dimensional
representation of the entropy s per molecule from the last equation as function
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Fig. 4. The figure shows a three-dimensional surface of the entropy per molecule s from
Equation (19) as function of no/n and ni/n. Both ranges of no/n and ni/n are (0.005, 0.5),
since it is unexpected that in a reversible motion more than half of the total molecules will
leave or enter the given interval (x1, x2). Note that for large no/n (ni/n) and small ni/n

(no/n) s tends to +1 (−1).

of ni/n and no/n, which are respectively the fractions of molecules that have en-
tered and come out of the interval (x1, x2). The probability w1 = erf(x/

√
2) must

begin from the minimum value of n0/n, since w1 can not be smaller than n0/n.
The ranges of both ni/n and no/n are specified to 0.005 ≤ ni/n, no/n ≤ 0.5 be-
cause in the reversible motion discussed here it is unexpected that more than half
of the total particles will enter or leave the interval (x1, x2). One may realize from
the figure that for large values of n0/n (ni/n) and comparatively small values of
ni/n (no 	= n) the entropy differences tend to +1 (−1) and when both n0 	= n and
ni/n are large s tends to zero from negative values.

As realized from Equation (19) when no = ni, which means that there is no
net transfer of molecules out of or into the interval (x1, x2), the entropy decrease
from Equation (19) is obviously zero. When, however, no 	= ni the molecules
that come out of the interval (x1, x2) and those that have entered it prevent, as
remarked, the reversible return of the pistons to their former places. This problem
has been discussed and solved by Szilard (1983) for the single cylinder. Our main
interest is to generalize from this four-piston cylinder to a large ensemble of such
cylinders and calculate, as done for the quantum examples in Sections 2 and 3, the
correlation among them.
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We assume that the initial state of all the N identical four-piston cylinders
is that in which the movable pistons B̀j , Bj are on the fixed ones Àj and Aj

where 1 ≤ j ≤ N (see Fig. 3). One then simultaneously and reversibly raises up
and down in a complete cycle all the 2N movable pistons B̀j and Bj , 1 ≤ j ≤ N .
Thus, if after the moving-up stage we find, for some of them, that no molecule
comes out of the interval (x1, x2) and no molecule from outside has entered it
then, as remarked, they record no entropy decrease during this stage. Note that if
no entropy decrease has been detected during the reversible upward motion then
one may assume no such decrease also in the downward motion. If, on the other
hand, one finds no molecules come out of the interval (x1, x2) and ni have entered
where no 	= ni then, as remarked, a decrease of entropy must occur. In such case,
the total decrease of entropy for the N cylinders after the moving-up stage is

δstotal = −k

j=N∑
j=1

n

(
erf

(
xj√

2

)(
1 − (noj

− nij )

n × erf
( xj√

2

)
)

ln

(
1 − (noj

− nij )

n × erf
( xj√

2

)
)

+
(

1 − erf

(
xj√

2

))(
1 + (noj

− nij )

n
(
1 − erf

( xj√
2

))
)

·

ln

(
1 + (noj

− nij )

n
(
1 − erf

( xj√
2

))
)

+ (noj
− nij )

n
ln

((
1 − erf

( xj√
2

))
erf

( xj√
2

)
))

, (20)

where we use Equation (19) and assume that the total number of molecules n are the
same for all the ensemble members. We, now, show that when the N experiments
of reversibly moving the pistons up and down are related to each other in the
sense that no two of them share the same value of either noj

/n or nij /n (or xj ),
where 1 ≤ j ≤ N , then the larger the value of N the more probable it is to obtain
entropy decrease. If, on the other hand, they are not related in this manner so that
some systems share the values of either noj

/n or nij /n (or xj ) then the mentioned
probability will be discontinuous, stochastic and much less clear compared to the
former case. We first note that since for all x ≥ 3 erf(x) ≈ 1 we may assume a
range of (−3, 3) from which we take the values for the N preassigned intervals
(−xj , xj ) where 1 ≤ j ≤ N . That is, we subdivide the interval (−3, 3) into N

different subintervals, where N is the number of cylinders, so that each has its
unique interval (−xj , xj ) besides its specific values of noj

/n and nij /n. Also, each
probability wij = erf(xj/

√
2) for any system Oj , (j = 1, 2, . . . , N ) must begin,

as remarked after Equation (19), from the minimum value of noj
/n and we also

assume (see the discussion after Equation (19)) that the 2N different values of
nij /n and noj

/n, 1 ≤ j ≤ N are from the range 0.005 ≤ noj
/n, nij /n ≤ 0.5. We

assign to each experiment that results in entropy decrease, after moving up the
pistons, the value of +1 and 0 otherwise. Thus, assuming that the movable pistons
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in the N cylinders are moved up we calculate the quantity

g(N ) = 1

N

i=N∑
i=1

gi(N ), (21)

where gi(N ) = 1 for an entropy decrease result and gi(N ) = 0 otherwise. That
is, the function g(N ) is directly proportional to the number of experiments which
result in entropy decrease and inversely proportional to those with a different
result (for which δs ≥ 0). Figure 5 shows g(N ) as a function of N , in the range
400 ≤ N ≤ 3500, and we see that g(N ) grows as the number N of related cylinders
increases where this relationship is effected, as remarked, by preparing the N

experiments so that any one of them have its unique noj
/n, nij /n and (−xj , xj )

where 1 ≤ j ≤ N . That is, the larger is the number of related experiments the
more frequent is the result of entropy decrease. If, on the other hand, this kind
of relationship is absent as when assigning randomly to any system Oj (j =
1, 2, . . . , N) an interval (−xj , xj ) (from (−3, 3)) and also noj

/n, nij /n (from
(0.005, 0.5)) we obtain a stochastic result for g(N ) that implies no clear-cut
consistent value. This is clearly seen in the sawtooth form of the curve of Fig. 6

Fig. 5. The curve shows the form of g(N ) from Equation (21) as a function of N after
performing the N experiments of lifting up the pistons where 400 ≤ N ≤ 3500.
Note that no two of the N experiments are identical and that each is deliberately
performed for different values of (−xj , xj ), noj

/n and nij /n where xj = 6 ×
noj

/n. We see that as N grows the number of experiments that end in an entropy
decrease increases.
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Fig. 6. The stochastic graph, which shows g(N ) from Equation (21) as a function
of N , is drawn for exactly the same conditions as those of Fig. 5 except that the
values of noj

/n and nij /n are randomly chosen. Note that in contrast to Fig. 5 some
of these experiments may be identical due to the random conditions under which
they are performed. Thus, the results do not show any clear-cut consistent value for
the entropy differences.

which is drawn under exactly the same conditions as those of Fig. 5 except that
the values of (−xj , xj ), noj

/n and nij /n are randomly chosen.
We note that the same results may be obtained by using other methods and

terminology. Thus, it is shown (Gisin and Percival, 1993) that the “localization”
(in the sense of smaller dispersion) for the state |φ〉 is greater the smaller is the
entropy which results when the rate of “effective interaction with the environment”
(Gisin and Percival, 1993) increases. Localization is another name for what we
call here “realizing or preserving a specific state” and the interaction with the
environment is equivalent to performing experiment (Bixon, 1982; Davies, 1978,
1979; Harris and Stodolsky, 1981; Joos and Zeh, 1985; Pfeifer, 1980), so that as
the rate of performing experiment grows the more realized and localized is the
state one begins with or the path of states along which one proceeds.

5. CONCLUDING REMARKS

We have studied the influence of observation, and especially the large number
of them, on the obtained results. This has been shown for both quantum and clas-
sical systems. For the quantum part in Sections 2 and 3 we have made use of the
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Feynman path integral (Feynman, 1948; Feynman and Hibbs, 1965; Roepstorff,
1994; Schulman, 1981) and the Everett’s relative state (Everett, 1957; Graham,
1973) methods. For the classical part in Section 4 we use entropy considerations
(Reif, 1965) for discussing the four-piston cylinder (Szilard, 1983). Using these
analytical methods we show that for producing the obtained results all the in-
volved systems and experiments should be related to each other in some kind of
relationship which assumes different, and even contradictory, forms for different
situations. Thus, for the static Zeno effect the relationship between the systems is
their being initially prepared in the same initial state and for the dynamic Zeno
and the classical cylinder this relationship is effected by initially preparing the
systems in different states.

This is, especially, emphasized in a clearer way using entropy considerations
in Section 4. The important factor that entails the collective entropy decrease is,
as remarked, when all the members of the ensemble are related to each other as
described in Section 4 (see Fig. 5). Unrelated ensemble of observers, no matter
how large it is, does not obtain the same required entropy decrease as seen clearly
in Fig. 6.
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